Lizards have one. Elephants have one. Even fish have one. You have one, too! What is it? A skeleton!

Skeletons are the bones inside animals’ bodies. The skeleton is the frame that muscles and skin wrap around. Skeletons give all vertebrates, including humans, their shape. You can probably name many animals just by looking at their skeletons.
The human skeleton has 206 bones, starting at the top with the skull and ending at the bottom with the toe bones. Many bones have muscles attached to them by tendons. These bones help us move. Some bones protect soft organs inside our bodies, such as the heart and brain. And many big bones have special areas in the center that make blood cells. Tissues called ligaments connect all the bones together to form the skeleton.

To learn how bones work, let’s take a closer look at different areas of the body.

Heads Up

Press your hand against your forehead—the part of your face above your eyebrows. You can feel your skull, or cranium, under the skin. The cranium is one set of bones in your body. It protects your brain, a very important and very soft organ. The cranium is like a crash helmet, but it is not as strong. For that reason, you should wear a helmet for sports such as biking and skating.
If you feel your head, your skull seems to be one piece. In fact, the skull is made up of many bones. The bones join at special joints called **sutures**. Unlike other joints, the sutures cannot move much.

Your skull has twenty-two bones, not counting the six in your ears and one in your throat. Under your cheeks, you can feel your cheekbones. Your jaw is made up of two bones.

If you look at a skeleton, you might see something missing from its face—a nose. The part of your nose that sticks out is not bone. Your nose is made of a tissue called **cartilage** (CAR-tih-ledj). Touch your nose and move it around. Cartilage can bend. Your bones cannot. You also have cartilage at the ends of bones. Cartilage keeps bones from rubbing against each other.

Skeletons also have teeth, but teeth are not bones. Teeth are harder than bones. The outside of a tooth is made of **enamel**. Enamel is the hardest thing in the body.
Put Your Back Into It

The skull connects to the spinal column, or backbone. You can feel the first few parts of the spinal column along the back of your neck. These bumps form your backbone and continue all the way to your hips. The bones in your back are called vertebrae (VER-teh-bray).

Your spinal column has two jobs. First, it protects the spinal cord, which runs through the vertebrae. The spinal cord is the place where your nerves meet to send information to your brain.

The second job of your spinal column is to let you bend, twist, roll, and flip. The backbone is a chain of bones, not one solid bone. It is flexible and can move in many directions.

The skull is not the only set of bones attached to the backbone. The ribs and pelvic bones are attached to it, too.

The ribs protect your lungs and heart. The lungs and heart lie inside the ribs, which form the rib cage. If you bang your chest, your lungs and heart don’t get crushed because the ribs form a strong wall around them. Your rib cage has twelve bones on each side.

Near the top of the spinal column are the shoulder blades and the collarbones. These bones make up the shoulders.

Near the bottom of the spinal column, two hip bones make up the pelvis. On each side, a pelvic bone looks like a small bowl. That’s because it holds your intestines and other lower-body organs.
And Now the Limbs

Your arms and hands let you lift and hold things. Your legs and feet help you to move around. The bones inside your limbs help you to do these actions.

Your arms each contain three bones. One bone is the upper-arm bone, attached at the top to the shoulder. Two bones make up the lower arm, between the elbow and the wrist.

Your wrist and hand together have more bones than any other part of your body—twenty-seven! That’s a total of fifty-four bones for both hands. Because wrists and hands have so many bones, they are flexible and precise. If they weren’t, we couldn’t do things like writing and drawing, playing the piano, and tying shoelaces.

The bones of the legs and feet are like the bones of the arms and hands. The top of the leg is one solid bone, called the thighbone. The bottom of the leg has two bones. Between the upper and lower parts of the leg is one more bone—the kneecap. The kneecap lies over the knee joint. It protects the tendons beneath it that let the leg bend.

Like the hand, the foot contains many bones—twenty-six. That’s fifty-two bones for both feet. The ankle and heel of a foot have seven bones. The ball of a foot has five bones. The foot has fourteen toe bones—two for the big toe and three each for the other toes. Skin and tissue on the bottoms, or soles, of the feet protect the bones when you jump and run.
Don’t Get Out of Joint

Along with 206 bones, the adult human body has over 100 joints. Joints are the places where bones meet. Bones are hard and do not bend. We can bend and twist because bones connect at joints.

Not all joints are the same. The joint where the upper-arm bone connects to the shoulder bone is a ball-and-socket joint. The connection between the upper-leg bone and the hip bone is another joint of this type. The top end of the upper-arm bone has a ball shape. This ball fits into a round hole, or socket, in the shoulder.

The elbow joint and the knee joint are hinge joints. Hinge joints only bend one way. The joints between the vertebrae are swivel joints, which tilt and turn. The last type of joint is a suture, like those on the skull. Sutures connect bones but do not move much.

Inside Your Bones

Bones may feel hard and solid like rocks, but they are not. Bones are alive with millions of bone cells. Bone cells need oxygen and food, just like other cells.

On the outside, a bone is hard and solid. This part is the compact bone. Below the compact bone is the spongy bone. Spongy bone has holes to keep the bones light so our muscles can lift them.

Inside the spongy bone is bone marrow. The body uses bone marrow to make blood cells. About half a pound of bone marrow makes about 50 billion red blood cells every day!
Keeping Bones Healthy

Even though bones are strong, they can break if they are hit hard enough. Broken bones can be fixed. Healing a broken bone takes a little help from a doctor and a lot of help from bone cells.

For a bone to heal correctly, the bone must be put back the way it was before the break. Doctors may move broken bones to put them back in place. They set a cast around the body part where the bone was broken. The cast keeps the body part from moving so the bone can heal. As soon as a bone breaks, bone cells begin repairing it. Holding the broken bone in place with a cast lets the bone cells do their job.

Bones need to stay healthy to remain strong. Exercising regularly is the best way to keep your bones in good working order. Eating a well-balanced diet helps the bone marrow to produce healthy blood cells. Legumes (such as peas or pinto beans), other vegetables, and fruits are good for your bones. Foods rich in calcium, such as dairy products and fortified soy milk, rice milk, and orange juice, can also help bones to grow.

Bones give your body its shape, and they also give you much more. They allow you to move, sit, stand, and write. You wouldn’t be you without your bones!
Glossary

ball-and-socket joint (n.) a joint that fits together as a ball fits into a glove (p. 13)

bone marrow (n.) spongy material in the center of bones that makes blood cells (p. 14)
cartilage (n.) an elastic tissue found in humans and other vertebrates (p. 8)
hinge joints (n.) joints that open like a door (p. 13)
legumes (n.) plants with seed pods, such as beans, lentils, and peas (p. 16)
ligaments (n.) tissues that connect one bone to another bone (p. 5)
precise (adj.) exact in movement or operation (p. 11)
spinal cord (n.) a collection of nerves that are protected by vertebrae (p. 9)
sutures (n.) joints or seams between skull bones (p. 7)
swivel joints (n.) joints that can tilt or turn (p. 13)
tendons (n.) tough tissues that attach muscles to bones (p. 5)
vertebrates (n.) animals with backbones (p. 4)